PHYSICS EQUATIONS - $\mathbf{1}^{\text {st }}$ SEMESTER

VELOCITY	$\text { velocity }=\text { final distance -initial distance } \frac{\text { time }}{\text { time }}$	$v=\underset{t}{\Delta \underline{d}}$
ACCELERATION	$\text { acceleration }=\frac{\text { final velocity }- \text { initial velocity }}{\text { time }}$	$\mathrm{a}=\underset{\mathrm{t}}{\mathrm{~V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}}$
GRAVITATIONAL ACCELERATION	$\begin{gathered} \text { velocity }=\text { acceleration } \cdot \text { time } \\ \text { distance }=1 / 2 \text { acceleration } \cdot \text { time }^{2} \end{gathered}$	$\begin{aligned} & \mathrm{v}_{\mathrm{y}}=\mathrm{at} \\ & \mathrm{~d}_{\mathrm{y}}=1 / 2 \mathrm{at}^{2} \end{aligned}$
PYTHAGOREAN THEOREM	The square on the hypotenuse is equal to the sum of the squares on the other two sides.	$c^{2}=a^{2}+b^{2}$
NET FORCE	Net Force $=$ mass \cdot acceleration	$\mathrm{F}_{\text {Net }}=\mathrm{ma}$
WEIGHT	Weight = mass \cdot acceleration due to gravity	$\mathrm{W}=\mathrm{mg}$
SLIDING FRICTION	friction force $=$ coefficient of friction \cdot normal force	$\mathrm{F}_{\mathrm{f}}=\mu \mathrm{F}_{\mathrm{n}}$
MOMENTUM	momentum $=$ mass \cdot velocity	$\mathrm{p}=\mathrm{mv}$
IMPULSE	Impulse $=$ force \cdot time $=$ change in momentum	$\mathrm{J}=\mathrm{Ft}=\mathrm{m} \Delta \mathrm{v}=\Delta \mathrm{p}$
CONSERVATION OF MOMENTUM	Sum momentum before = Sum momentum after $\begin{aligned} & \mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}^{\prime}+\mathrm{m}_{2} \mathrm{v}_{2}^{\prime} \\ & \mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}^{\prime} \end{aligned}$	$\Sigma \mathrm{p}_{\text {before }}=\Sigma \mathrm{p}_{\text {after }}$ Elastic collisions Inelastic collisions
WORK	Work $=$ force \cdot distance	$\mathrm{W}=\mathrm{F} \cdot \mathrm{d}$
POWER	$\text { power }=\frac{\text { work }}{\text { time }}$	$P=\frac{W}{t}$
POTENTIAL ENERGY	potential energy $=$ mass \cdot gravity \cdot height	P.E. $=\mathrm{mgh}$
KINETIC ENERGY	kinetic energy $=1 / 2$ mass \cdot velocity 2	K.E. $=1 / 2 m v^{2}$
CONSERVATION OF MECHANICAL ENERGY	$\begin{gathered} \text { Energy }_{\text {before }}=\text { Energy }_{\text {after }} \\ \text { Kinetic Energy }_{1}+\underset{\substack{\text { Potential Energy } \\ 1}}{ }+\text { Work }_{\text {Potential Energy }}^{2} \end{gathered}=\text { Kinetic Energy } y_{2}+\text { + }$	$\begin{gathered} \Sigma \mathrm{E}_{\mathrm{b}}=\Sigma \mathrm{E}_{\mathrm{a}} \\ \mathrm{KE}_{1}+\mathrm{PE}_{1}+\mathrm{W}=\mathrm{KE}_{2}+\mathrm{PE}_{2} \end{gathered}$

